

A/800/T/ TC Micro g Piezo-Electric Accelerometer

9nC/g nom

400gm wt

150°C max temp

Highest sensitivity multiple shear plate vibration transducers intended for micro q level measurement - virtual immunity to strain input side effects provides guarantee of low frequency, measurement integrity. System nose level of 10-3pC is equivalent to 1µg. With bandwidth restricted to 2 kHz, 1 octave below resonance, noise floor should be significantly below this. Noise level vs. upper corner frequency for the CA/04/N charge amplifier, A/800 source and nominal 10Mtr, cable is shown in fig.1. Bear in mind that charge amplifier noise increases as a function of input capacitance - noise assessment should be made with the charge amplifier input correctly terminated. The transducer adds mass as it points of attachment to a structure, thus imposes a transparency constraint above which data corruption will be excessive.

The single degree of freedom example

$$\omega = \sqrt{\frac{3}{M}} \mid MT$$
 where MT represents the

transducer mass, reduces we by 3% for a transducer adding 10% to the structure mass. Application area of the A/800 is this limited in scope to low level vibration surveys in the civil engineering and heavy engineering domain.

Temperature Response

Options

- Hermetic TNC connector version : ref A/800, TC
- Wideband temperature calibration -50/+150°C

A/800/TC A/800/TC A/800/TC A/800/TC

	_			Ty	/pi	ca	I Fre	quer	су	Re	spo	ons	se					
٥	1.1)	V						$\left[\begin{array}{c} 1 \\ \end{array} \right]$
Sensitivity ratio	1	~~~								-/								
	0.95																	
300	· PRINCE	**********	 0.0.0.	×××××	******		00 *********	Frequ			× 100000	1000		******	W. W.	× 10× 10× 10× 10× 10× 10× 10× 10× 10× 10	*****	0000

Conversion Mode	Konic								
Charge sensitivity nC/g	7-11								
Capacitance pF	26/31								
Resonant frequency kHz	4								
Cross axis error % max	5								
Temperature range ^O C	-50/+150								
Charge sensitivity deviation re 20 °C	-5%@ - 50 +15%@ +150								
Frequency Range									
Max continuous accn. G sine	500								
case material	s/steel 303 S31								
mounting	Base tapped 1/4 UNF x 4mm deep								
weight gm	400/ 407 (TC)								
connector	Microdot skt, 10/32 UNF thd (A/800,T) TNC skt. (A/800, TC)								
case seal	Welded, hermetic connector (TNC)								

CMV Steck GmbH

Rheinstraße 92 Tel: + 49 (0) 7275 988 684 - 0 www.CMV-Steck.de D-76870 Kandel

Fax: + 49 (0) 7275 988 684 - 9 e-mail: info@CMV-Steck.de

